Non-rotating and rotating radiative-convective equilibrium
نویسنده
چکیده
Radiative-convective equilibrium (RCE), in which the radiative cooling in the atmosphere is balanced by the convective heating in a horizontally homogeneous environment, is a good starting point for studying tropical convection. It also provides an idealized framework to compare analogous simulations by global climate models (GCMs) which rely on convective parameterizations, and cloud-resolving models (CRMs) which aim to explicitly resolve moist convection. In this work, we seek to further our understanding of tropical cyclones and convective aggregation in the idealized framework of non-rotating and rotating RCE with both types of models. First, we achieve rotating RCE by coupling the resolution and physics of a GCM to rotating hydrostatic dynamics. A large doubly-periodic f-plane is used to allow multiple tropical cyclones (TCs) to coexist. Both cases with fixed and coupled sea surface temperature (SST) are considered. For fixed SST, the sensitivity to environmental parameters is investigated. Particularly, we find that the intensity, radius of maximum wind and size of TCs increase with SST. For coupled SST, SST is predicted using a simple slab ocean model. The effect of the eyewall cooling on TC intensity is studied. We show that Potential-Intensity theory overestimates the impact of the eyewall cooling on TC intensity, as its key assumption that entropy is well-mixed along angular-momentum surfaces within the atmospheric boundary layer no longer holds in cases with substantial eyewall cooling. We then study TC genesis with a small doubly-periodic f-plane. Through cloud-resolving simulations, we show that vertical shear plays an important role on regulating the sensitivity of tropical cyclogenesis to both the environmental rotation and thermodynamic state. As indicated by analogous simulations with the resolution and physics of GCMs, such effects of wind shear might not be fully represented in GCMs. Finally, we investigate convective self-aggregation from non-rotating RCE. The critical SST for self-aggregation to occur is sensitive to the model configuration, in the sense that the smaller convective cells the model simulates, the higher the critical SST could be. Such iii model sensitivity adds complexity to the dependency of self-aggregation on SST and its implication on the variation of convective aggregation with global warming.
منابع مشابه
Early Online Release
The behavior of rotating and non-rotating aggregated convection is examined at various horizontal resolutions using the hypohydrostatic, or Reduced Acceleration in the VErtical (RAVE), rescaling. This modification of the equations of motion reduces the scale separation between convective and larger-scale motions, enabling the simultaneous and explicit representation of both types of flow in a s...
متن کاملFree convective heat and mass transfer of magnetic bio-convective flow caused by a rotating cone and plate in the presence of nonlinear thermal radiation and cross diffusion
This article explores the heat and mass transfer behaviour of magnetohydrodynamic free convective flow past a permeable vertical rotating cone and a plate filled with gyrotactic microorganisms in the presence of nonlinear thermal radiation, thermo diffusion and diffusion thermo effects. We presented dual solutions for the flow over a rotating cone and a rotating flat plate cases. Similarity var...
متن کاملConvective Self-Aggregation and Tropical Cyclogenesis under the Hypohydrostatic Rescaling
The behavior of rotating and nonrotating aggregated convection is examined at various horizontal resolutions using the hypohydrostatic, or reduced acceleration in the vertical (RAVE), rescaling. This modification of the equations of motion reduces the scale separation between convectiveand larger-scale motions, enabling the simultaneous and explicit representation of both types of flow in a sin...
متن کاملEntropy generation due to unsteady hydromagnetic Couette flow and heat transfer with asymmetric convective cooling in a rotating system
Entropy generation in an unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates in a rotating system have been analyzed. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient following the Newton's law of cooling. A numerical solution for governin...
متن کاملConvective Heat Transfer from a Heated Rotating Disk at Arbitrary Inclination Angle in Laminar Flow
In this paper, experimental data and numerical results of heat transfer from a heated rotating disk in still air are presented over a large range of inclination angles and a dimensionless correlation is developed for forced, natural and mixed convection. The measured Nusselt number over the rotating disk is compared with the numerical results. The goal of the present research is to develop a se...
متن کامل